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MANIFOLD SAMPLING FOR L1 NONCONVEX OPTIMIZATION

JEFFREY LARSON*, MATT MENICKELLYT*, AND STEFAN M. WILD*

Abstract. We present a new algorithm, called manifold sampling, for the unconstrained min-
imization of a nonsmooth composite function h o F. By classifying points in the domain of the
nonsmooth function A into what we call manifolds, we adapt search directions within a trust-region
framework based on knowledge of manifolds intersecting the current trust region. We motivate this
idea through a study of ¢; functions, where the classification into manifolds using zero-order infor-
mation about the constituent functions F; is trivial, and give an explicit statement of a manifold
sampling algorithm in that case. We prove that all cluster points of iterates generated by this al-
gorithm are stationary in the Clarke sense. We prove a similar result for a stochastic variant of
the algorithm; interestingly, the result is deterministic (not almost sure). Additionally, our algo-
rithm can accept iterates that are points of nondifferentiability and requires only an approximation
of gradients of F' at the trust-region center. Numerical results presented for several variants of the
algorithm show that using manifold information from additional points near the current iterate can
improve practical performance. The best variants are also shown to be competitive, particularly in
terms of robustness, with other nonsmooth solvers.
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1. Introduction. This paper addresses the unconstrained optimization problem
min {f(z) : € R"} when f is of the form

fla) = |Fi(z)| = | F(x)lh (L.1)
i=1

and the function F' : R” — R" is sufficiently smooth, as formalized in the following
assumption.

ASSUMPTION 1. The function f is of the form (1.1), each F; is continuously
differentiable, and each V F; is Lipschitz continuous with Lipschitz constant L;; define
L= 22:1 L.

Minimizing the function (1.1) is a special case of more general composite non-
smooth optimization

min {f(x) = g(z) + h(F(z)) : z € R"}, (1.2)

where g and F' are smooth but A is nonsmooth. We focus on the objective function
(1.1) in order to succinctly introduce, analyze, and empirically study a general algo-
rithmic framework. Although the form of h studied here is convex, our framework
does not require this.

Furthermore, this framework—which we refer to as manifold sampling—does not
require the availability of the Jacobian VF'. As a result, manifold sampling is applica-
ble both when inexact values for VF(x) are available and in the derivative-free case,
when only the values F(z) are available. In Section 2 we motivate the use of the term
manifold in the context of functions of the form (1.1) and show that these manifolds
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can be determined without using Jacobian information. We also review the literature
in composite nonsmooth optimization.

Section 3 introduces a manifold sampling algorithm. The algorithm uses a smooth
model M of the mapping F' and proceeds like a traditional trust-region algorithm until
it encounters an area of possible nondifferentiability. In the case of the function (1.1),
a signal for potential nondifferentiability is directly obtained from the signs of the r
component functions at the current iterate. We also propose different mechanisms for
incorporating such sign information from the current iterate and nearby points.

Under minimal assumptions, in Section 4 we show that our algorithm’s smooth,
local model of the function f,

m? (z* + 5) = f(2F) + <s,pr0j (O, VM (z%) oh (F (2%)) )> ) (1.3)

generates descent directions at the current point z*. Furthermore, we prove that all
cluster points of the algorithm are Clarke stationary points. We show in Section 5 that
convergence again holds when using sign information from stochastically generated
points.

This stochastic sampling proves to be beneficial in practice, as our numerical tests
in Section 6 demonstrate. Our experiments also underscore the relative robustness
of four variants of the proposed manifold sampling algorithm. The tested determin-
istic variants include one that performs efficiently when function evaluations occur
sequentially as well as variants that can exploit concurrent function evaluations.

2. Background. We now introduce notation and provide context for our man-
ifold sampling algorithm. We follow the convention throughout this paper that finite
sets are denoted by capital Roman letters while (possibly) infinite sets are denoted
by capital calligraphic letters.

2.1. Nonsmooth Optimization Preliminaries. We define the set of points
at which a function f is differentiable by D C R™ and its complement by D¢ In
smooth optimization, a first-order necessary condition for x to be a local minimum
of f is that Vf(xz) = 0. In nonsmooth optimization, if z € D¢ then one needs a
more generalized first-order necessary condition; we achieve this with the generalized
gradient Jf, which is a set-valued function referred to as the Clarke subdifferential.

The Clarke directional derivative at x in the direction d is given by

f°(z;d) = limsup Jly+td) — fly)

2.1
y—x,tl0 t ( )

The Clarke subdifferential at x is the set of linear support functions of f°(x;d) when
viewed as a function of d € R™:

Of(x) ={veR": f°(x;d) > (v,d) for all d € R"}. (2.2)

By using the definitions (2.1) and (2.2), one can show (see, e.g., [5, Proposi-
tion 2.3.2]) that if f is locally Lipschitz near 2 and attains a local minimum or maxi-
mum at x, then 0 € df(z). Thus, 0 € 9f(x) can be seen as a nonsmooth analogue of
the first-order necessary condition V f(z) = 0. This condition, 0 € df(z), is referred
to as Clarke stationarity.

Furthermore, as a consequence of Rademacher’s theorem, if f is locally Lipschitz,
then D¢ is a set of Lebesgue measure zero in R™. In such cases, an equivalent definition
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(see, e.g., [5, Theorem 2.5.1]) of the Clarke subdifferential is
07w = co 1m V1) lim o = (21D} @Y
j—o0

where co denotes the convex hull of a set. Equation (2.3) says that df(x) is the
convex hull of all limits of gradients of f at differentiable points in an arbitrarily
small neighborhood about .

2.2. Manifolds of (1.1). The signs of the component functions F; play a critical
role in our focus on functions satisfying Assumption 1. We let sgn be the scalar
function that returns the values 1, —1, and 0 for positive, negative, and null arguments,
respectively, and we define sign : R™ — {—1,0,1}" by

sign (z) = [ sgn(Fi()) sgn(Fa(z)) - sgn(Fy(2) "

We say that sign(z) returns the sign pattern of a point x. There exist 3" possible
sign patterns for any = € R™; by indexing these possible sign patterns, we define
pat? € {—1,0,1}" for each ¢ € {1,---,3"}.

For any = € R", its manifold M(x) is the maximal topologically connected set
satisfying

M(z) = {y € R" : sign(y) = sign(x)} .

We define the union of all manifolds with the same sign pattern pat? as a manifold
set and denote it by M? = U M(zx). Letting B(z,¢) = {z : ||z|]| < €}
{z:sign(z)=pat?}

denote the ball of radius € around a point x, we say that a manifold set M? is active
at = provided that M? N B(x,€) # 0 for all € > 0.

We note that if Assumption 1 is satisfied, then the function f is locally Lipschitz.
By using chain rule results (dependent on regularity conditions; see, e.g., [5, Defini-
tion 2.3.4]) that are ensured by Assumption 1, the subdifferential of f at a point x is

of(z) = Z sgn(F;(z))VF;(x) + Z co{—VF;(x),VF;(x)}, (2.4)

i I (2)#0 @ Fy (z)=0

where addition is understood to be setwise. Consequently, f is differentiable at x
if and only if Fj(z) = 0 implies VF;(z) = 0 for ¢ € {1,...,r}. This observation
motivates our definition of the nondifferentiable set of F;, D, given by

D ={x e R": F;(x) =0 and VF;(z) # 0}. (2.5)

Note that for a function satisfying Assumption 1, D¢ = U;_;D§. Our algorithmic
framework in Section 3 is predicated on a relaxation of Df that does not require the
(exact) derivative VF;(x).

2.3. Related Work. The analogue to steepest descent for nonsmooth optimiza-
tion involves steps along the negative of the minimum norm element of the subdif-
ferential, —proj (0,6 f (gck)) The algorithm that we propose is related to bundle
methods [15] in that the subdifferential in this step is approximated by a finite set of
generators.
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A class of methods for nonsmooth optimization related to both bundle methods
and our proposed algorithm is that of gradient sampling. Such methods exploit situa-
tions when the underlying nonsmooth function is differentiable almost everywhere by
using local gradient information around a current iterate to build a stabilized descent
direction [4]. For example, under weak regularity conditions, the closure of the set
co {Vf(y) cy € B(zF, A)n D} is a superset of df(z*). Gradient sampling methods
employ a finite sample set {y',---,y?} C B(xz*, A) ND and approximate df(z*) by
co{Vf(y'), -+ ,Vf(y?)}. The negative of the minimum norm element of this latter
set is used as the search direction.

Constructing this set is more difficult when Vf is unavailable. A nonderivative
version of the gradient sampling algorithm is shown in [17] to converge almost surely
to a first-order stationary point. However, the analysis depends on the use of a Gupal
estimate of Steklov averaged gradients as a gradient approximation. Such an ap-
proach requires 2n function evaluations to compute each approximate gradient. In
effect, a single gradient approximation is as expensive to compute as a central dif-
ference gradient approximation, and the approximations must be computed for each
point near the current iterate. With this motivation, Hare and Nutini [13] propose an
approximate gradient-sampling algorithm that uses standard (e.g., central difference,
simplex) gradient approximations to solve finite minimax problems of the compos-
ite form max; F;(x). Similar to our focus on the form (1.1), Hare and Nutini [13]
model the smooth component functions F; and use the particular, known structure of
their subdifferential co {VFj(z) : j € argmax; F;(z)} within their convergence anal-
ysis. Both [13] and [17] employ a line search strategy for globalization. Our method
employs a trust-region framework that links the trust-region radius with the norm of
a model gradient, which can serve as a stationarity measure.

Other methods also exploit the general structure in composite nonsmooth opti-
mization problems (1.2). When the function h is convex, typical trust-region-based
approaches (e.g., [3, 8, 9, 22]) solve the nonsmooth subproblem

min {h (F(z") + (s, VM(2"))) : s € B(z", A)}. (2.6)

The model M is a Taylor expansion of I’ when derivatives are available. In this case,
Griewank et al. [12] propose building piecewise linear models using VF' from recent
function evaluations. These nonsmooth models are then minimized to find future
iterates and V F information for subsequent models. When derivatives are unavailable,
recent work has used sufficiently accurate models of the Jacobian [10, 11]. We follow
a similar approach in our approximation of VF but employ a fundamentally different
subproblem, locally minimizing smooth models related to (1.3). In contrast to (2.6),
our subproblem does not rely on the convexity of h.

There also exist derivative-free methods for nonsmooth optimization unrelated to
gradient sampling. For example, a generalization of mesh adaptive direct search [1]
can find descent directions for nonsmooth problems by generating an asymptotically
dense set of search directions. Similar density requirements exist for general direct
search methods [20]. One of the derivative-free methods in [10] employs a smoothing
function f,(x) that is parameterized by a smoothing parameter p > 0 satisfying

lim f,(2) = f(),

z—ax,ul0

for any x € R™. By iteratively driving g — 0 within a trust-region framework, the
authors prove convergence to Clarke stationary points and provide convergence rates.
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We note that the Steklov averaged gradients in [17] are also essentially smoothing
convolution kernels. Our proposed method requires neither a dense set of search
directions nor smoothing parameters.

3. Algorithmic Framework. We now outline our algorithm, which samples
manifolds (as opposed to gradients or gradient approximations) in order to approx-
imate the subdifferential df(x*). When 2* is changed, the 7 component function
values Fj(z*) are computed, immediately yielding sign(x*). Then, » models, m??,
approximating F; near x* are built. Using the value of sign(z*), we infer a set of
generators, G*, using the manifolds that are potentially active at 2*. The set co (Gk),
detailed in Section 3.2, is used as an approximation to df(z*).

We let g* denote the minimum norm element of co (Gk)7

g" = proj (0,co (G")), (3.1)

which can be achieved by solving the quadratic optimization problem
1
min {QATGTG)\ cefd=1, 1> o} , (3.2)

where the columns of G are the generators in G¥. A solution A\* to (3.2) is a set of
weights on the subgradient approximations that minimize ||GA||*. That is, g¥ = GA*.

The minimum norm element g* will define the first-order term of a smooth master
model, mg :R™ — R and thereby the trust-region subproblem

min {mi(x) sz € B(ak, Ak)} , (3.3)

which has the closed-form solution s* = —@—,{?H g* when m£ is linear.

Provided the solution z* + s¥ of (3.3) belongs to a manifold that was involved
in the construction of ¢*, we apply a ratio test to determine the successfulness of
the proposed step, as in a standard trust-region method. If this manifold is not con-
tributing a generator in G*, we augment G* and construct a new g*. Since there are
finitely many manifolds (at most 3" in the case of (1.1)), this process will terminate.

Our ratio test quantity

(F(a*), sign(z* + s%)) — f(z* + %)
(—sk, VM (z*)sign(z* + s¥))

P (3.4)

differs from the usual ratio of actual reduction to predicted reduction only in that it
considers both the function and model from the perspective of the manifold of z* + s*.
In particular, our numerator is more conservative than the actual reduction since

(F(a"),sign(a® + s%)) — f(a") = (F(2"), sign(a" + s*) — sign(a")) <0,

where the inequality holds because F;(x")[sign(z")]; = |Fi(«®)| > t;F;(«*) for any i
and for all ¢; € {—1,0,1}. When m£ is linear, the relationship between the denomi-
nator of our p; and the model reduction is

(—s", VM (e")sign(a" + ")) = (mf(e*) = mf (" + 5"))
= (—s" VM (2")sign(z* + s) — ¢*) = H?’f”@k, VM (z")sign(z® + s*) — g*),
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Algorithm 1: Manifold sampling.

1 Set parameters 71, 72, Ydec, and Yinc
2 Choose initial iterate 2° and trust-region radius Ag > 0; set k = 0
3 while true do

4 For each Fj, build a model m that is fully linear in B(z*, Ay)
5 Build a set of generators G*
6 while true do
7 Compute g* using (3.1), and build master model mi
8 Solve (3.3) to obtain z* + s*, and evaluate f(z* + s*)
9 if VM (2%)sign(2* + s*) € G* then

10 ‘ break; go to Line 13

11 else

12 | G* « GFUVM (a")sign(zF + s¥)

13 if Ay < n2|lg"|| (acceptable iteration) then

14 Update py through (3.4)

15 if pr. > m (successful iteration) then

16 | 2P 2k 5P At ¢ YineAk

17 else

18 L (Ek+1 — .’Ek7 Ak+1 — A/decAk

19 else

20 L 2P 2P Apiy ¢ YaecAg

21 k+—k+1

which is nonpositive on acceptable iterations (as shown in Lemma 3).

We now state our framework in Algorithm 1 and assumptions on the algorithmic
parameters in Assumption 2.

ASSUMPTION 2. 11 € (0,1), 72 € (0,00), Ydec € (0,1), and vinc > 1.

3.1. Model Quality. In order to prove convergence of our algorithm, the models
m* must sufficiently approximate F; in a neighborhood of zF. We require that
the models be fully linear in the trust region, a notion formalized in the following
assumption.

ASSUMPTION 3. Fori € {1,...,r}, let m** denote a model with Lipschitz contin-
uous gradient intended to approzimate F; on some B(x,A). For eachi € {1,...,r},
for all z € R™, and for all A > 0, there exist constants ki e and K; g, independent of
x and A, so that

|Fi(z + s) = mP (2 4 s)| < ki etA? Vs € B(0,A)
|VE(z +s) = Vi (z + s)|| < KiegA Vs € B(0,A).
For these constants, define k¢ =Y .| Kief and kg = i Kieg-

Assumption 3 is nonrestrictive, and one can derive classes of models satisfying the
assumption both when VF; is available inexactly and when VF; is unavailable. For
instance, in the latter case, the assumption holds when m’ is a linear model interpo-
lating F; at a set of sufficiently affinely independent points (see, e.g., [6, Chapter 10]);
in this case, K ef and ke scale with n and the respective Lipschitz constants of mb
and Vm!7.
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3.2. Generator Sets. We complete our description of the manifold sampling
algorithm by showing how the set of generators G* is built so that co (Gk) approx-
imates df(z*). Given the definition of the Clarke subdifferential in (2.3) and the
known form of the subdifferential in (2.4), we know that the extreme points of df(z)
must be the limits of sequences of gradients at differentiable points from manifolds
that are active at . Therefore, the extreme points of 0f(x) are a subset of VF(x)pat?
over g € {1,...,3"}.

For any ¢ € {1,...,3"}, an approximation

VM(z) = [Vm' (z), -, Vm'"(z)]

of the Jacobian VF induces an approximation VM (x)pat? to VF(xz)pat?. Since
these models may be inexact, we relax the dependence on VF; in (2.5) and thereby
include terms of the form co {—Vm!(z), Vm’i(z)} whenever F;(z) = 0.

This is the motivation for our first procedure for forming the generator set G*.
Algorithm 2 initializes G* with VM (2*)sign(z*) and then triples the size of G* for
each i satisfying sgn(F;(z*)) = 0. Our analysis of Algorithm 1 will show that this
strategy allows us to obtain an approximation of the subdifferential df(z*).

Algorithm 2: Forming generator set G* using possibly active manifolds at x*.
Input: 2% and VM (z*)
GF «— {VM (z*)sign(z*)}
fori=1,...,r do
if sgn(F;(z*)) = 0 then
L | G* « GFU{G" + Vm! (a7)} U{G" — VmT (z")}

(S R VI

We propose a second approach for constructing G* that uses sign patterns of
points near z¥ and not just sign(z*). Although this approach is inspired by gradient
sampling, we note that we are not approximating the gradient at any point other than
x¥. We naturally extend our definition of active manifolds by saying that a manifold
set MY is active in a set S provided there exists x € § such that MY is active at .
We denote such a sample set at iteration k by Y (2, Ag) € B(z*, Ay). This set can
come, for example, from the set of all points previously evaluated by the algorithm
that lic within a distance Ay of z¥.

We can now state Algorithm 3, which constructs generators based on the set of
manifolds active in Y (z¥, Ay). Intuitively, this additional manifold information ob-
tained from sampling can “warn” the current iterate about sudden changes in gradient
behavior that may occur within the current trust region.

Algorithm 3: Forming generator set G* using possibly active manifolds in
Y(a:k, Ak)

1 Input: 2%, VM (2%), and Y (2%, Ap) = {2*,4%,--- 9P}

2 Initialize G¥ using Algorithm 2(z*, VM (z%))

3 for j=2,...,pdo

4 | G"=GFUVM(zM)sign(y’)
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Other reasonable approaches for constructing G* exist. For our analysis, a re-
quirement for G* is given in Assumption 4.
ASSUMPTION 4. Given x* and Ay, > 0, the constructed set G* satisfies

VM(zF)sign(a®) + Y uVmfi@h) s e {-1,0,1}" 5 G,

i:[sign(z¥)],=0

GF CSVM(zM)sign(y) + > tVmT(2h) st € {=1,0,1}",y € B(a"; Ay)
i:[sign(y)],=0

Clearly, a set G* produced by Algorithm 2 or Algorithm 3 will satisfy Assump-
tion 4. Furthermore, any generator set satisfying Assumption 4 has |G| < 3".

4. Analysis. We now analyze the iterates of Algorithm 1.

4.1. Preliminaries. We first show a result linking elements in a set similar to
the form of G* to the subdifferentials of f at nearby points. Subsequent results will
establish cases when our construction of the generator set G* satisfies the suppositions
made in the statement of the lemma.

LEMMA 1. Let Assumptions 1 and 8 hold, and let x,y € R™ satisfy ||z —y| < Ag.
Suppose that {pat? :s=1,...,5} C {patq-/e' 28 =1,...,5'} for

G={VM(z)pat? :s=1,...,5} and df(y) = co {VF(y)path’ i =1,... ,j’} .
Then for each g € co (G), there exists v(g) € Of(y) satisfying
lg —v(g)| < (kg + L)Ay, (41)

where kg and L are defined in Assumption & and Assumption 1, respectively.

Proof. Let g € co (@) be arbitrary. Since co (G) is finitely generated (and thus
compact and convex), g can be expressed as a convex combination of N < n + 1
of its generators due to Caratheodory’s theorem. Without loss of generality (by
reordering as necessary), let these generators be the first N. That is, there exist
Agis- s Agw € (0,1] with SN A, =1 so that

N
g= Z Ag, VM (z)pat?s. (4.2)

s=1

By supposition, VF(y)pat? € df(y) for s =1,..., N. Since df(y) is convex, we
have that v(g) € 9f(y), where v(g) is defined as

N
v(g) =Y _ A, VF(y)pat?,

s=1
using the same A,, as in (4.2) for s =1,..., N. Observe that for each s,
VM (z)pat® — VF(y)pat®|| = [|(VM(z) — VF(x) + VF(x) = VF(y))pat®||

<|[IVM(z) = VE()|| + [VF(x) = VE(y)|
S (Kg + L)Ak
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Applying the definitions of g and v(g) yields the expression (4.1). O

The approximation property in Lemma 1 can be used to motivate the use of the
master model gradient in (3.1). Before demonstrating how the smooth master model
identifies descent directions, we state a canonical result [2, Proposition 1.1.9], which
we refer to throughout as the “Projection Theorem.”

THEOREM 2. Let G be a nonempty closed convex subset of R™, and let z be a
vector in R™. There exists a unique vector g* € G that minimizes ||z — g||, referred to

as the projection of z onto G. Moreover, g* is the projection of z onto G if and only
if (9—g*,9" —2) >0 forallg € G.

4.2. Analysis of Algorithm 1. We now demonstrate that building a master
model gradient ¢* from the gradients of the models of manifolds that are active in
the trust region ensures a successful iteration if Ay is sufficiently small.

LEMMA 3. Let Assumptions 1-8 hold, let mi be linear for all k, and let every
component model be of the form m%i(z* + s5) = F;(zF) + (VmPi(2%),s). If Ax <
min { 1=m ,7]2} llg®|l, then iteration k of Algorithm 1 is successful.

kg

Proof. Notice that the bound on Ay is positive by Assumption 2 and that Ay <

n2||g¥|| ensures that the iteration is acceptable. Since mi is linear, s* = — Hﬁ’?ll g

Thus, the definition of pj in Line 14 of Algorithm 1 yields

_ |[(F(a),sign(a* + s7)) — fa* + 5*)
low =1 = (—sk VM (z*)sign(a* + sF)) !

(F(2%),sign(a® + s*)) — f(z* + s*) + (s¥, VM (2¥)sign (2 + s*)) .
ot VM (e sign(a” + 54)

(4.3)
By using the linear form for each component model, the numerator of (4.3) satisfies

’<F(l‘k), sign(z® 4 s%)) — f(aF + s5) + (s, VM (2")sign(z* + sk)>‘

- ’f(x’“ 45 = S mP (o + 5 sign(e + )
i=1

Z (Fz(xk + 55y —mPi 2k + sk)) [sign(z* + s));

i=1

< Y[R + ) - m @ 4 )]
i=1

< keAF, (4.4)
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where the last inequality is due to Assumption 3. We can also bound the denominator
of (4.3) through

A .
\Hg:”@k, VM (*)sign(a® + s’“»\

k k gk gk
- <VM(“’” Jsign ( — A ||gk|) B ||gk|>

(VM k\as k*A gk _k kA gk
= (VMDstgn {27 = Auyy ) =97 97 Ay

> Allg®ll, (4.5)

where the last inequality follows from the Projection Theorem and the fact that
Algorithm 1 requires that VM (z*)sign(z* + s*) € G* before s* can be accepted.
Using (4.4) and (4.5) in (4.3) yields

IifAi KfAk
lor — 1] < = <1—m,
Acllg®l gkl

where the last inequality is by the supposition on Ay. Thus, py > 71, and iteration k
is successful. O

The next result shows that the trust-region radius converges to zero.

LEMMA 4. Let Assumptions 1 and 2 hold, and let m£ be linear for all k. If
{x¥ Ay} is generated by Algorithm 1, then Ay — 0.

Proof. On successful iterations k, the linearity of m£ implies that

(F(x"),sign(a® 4 s%)) — f(z® + s) > n1 (—s", VM (2")sign(z* + s*))

Ay
=
g |l

> mAxlg"|

-2y,
72

(g%, VM (z*)sign(z" + s*))

where the last two inequalities follow by (4.5) and the acceptability of all successful
steps, respectively. If there are infinitely many successful iterations, let {k;} index
them. Notice that on any iteration,

(F(a"),sign(a® + s*)) < (F(a"),sign(a")) = f(2"),

since, for any i, F;(z*)[sign(z¥)]; = |F;(2%)| > t; Fi(aF) for all t; € {~1,0,1}.
Since f is bounded below by zero by Assumption 1 and f(x*) is nonincreasing in
k, having infinitely many successful iterations implies that

(F(zh),sign(z™ + %)) — f(z™ + ")

M8

00> Y fah) — fah +sb) >
=0

<.
I
o

A2

J

>

A

<
I
=)

Thus, Ag;, — 0 provided {k;} is an infinite subsequence. Since A} increases by
Vine on successful iterates, for any successful iterate ki, yincAr, > A; > Ay, , for all
ki < j < kiy1. Therefore, Ay — 0 if the number of successful iterates is infinite.
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If there are only finitely many successes, then there is a last successful iteration
k;r, and the update rules of the algorithm will monotonically decrease Ay on all
iterations £ > kj.

We have showed that regardless of whether Algorithm 1 has an infinite or a finite
number of successful iterations, Ay — 0. O

We now show that the norms of the master model gradients are not bounded
away from zero.

LEMMA 5. Let Assumptions 1-8 hold, let m£ be linear for all k, and let every
component model be of the form m* (z* 4 s) = F;(z%) + (VmFi (2%), s). If {zF, AL} is
generated by Algorithm 1, then for all € > 0, there exists a k() such that ||g"|| < e.
That is, lim inf ||g*|| = 0.

k— o0

Proof. To arrive at a contradiction, suppose that there exist j and ¢ > 0
so that for all k > j, ||¢¥]] > e. By Lemma 3, since Algorithm 1 requires that
VM (zF)sign(z® 4 s¥) € G* before s* can possibly be accepted, any iteration sat-

isfying Ax < min — N

,772} lg¥|| will be successful. Hence, by the contradiction
Kf
hypothesis, the first k£ > j satisfying

Akﬁmin{l_m,ng}e (4.6)
Rf
is guaranteed to be successful and A1 = YincAx > Agk. Thus Ag does not decrease
when k > j and Ay satisfies (4.6) contradicting Lemma 4. O

Before showing that every cluster point of {z*} is a Clarke stationary point, we
recall basic terms and a proposition from [21].

Motivated by the subdifferential operator df(z), we first formalize the notion of
a limit superior of a set mapping (i.e., a mapping that can map a vector to a set of
vectors). For a set mapping D : R™ — R", the limit superior of D as x — Z is defined
by the set mapping

limsup D(z) = {y : 3{z" : k > 1} = Z and {y* : k > 1} — y with y* € D(z)}.

T—T

A set mapping D is said to be outer semicontinuous at T provided

limsup D(z) = D(Z).
r—x

The following result is given as Proposition 8.7 in [21].

THEOREM 6. If a function f : R™ — R is continuous, then the set mapping O f(x)
s everywhere outer semicontinuous.

We now prove the promised result.

THEOREM 7. Let Assumptions 1-8 hold, let m£ be linear for all k, let every
component model be of the form m¥ (z* + s) = F;(2F) + (VmPi(2¥), s), and let As-
sumption 4 hold. If x* is a cluster point of a sequence {x*} generated by Algorithm 1,
then 0 € Of (z*).

Proof. Suppose first that there are only finitely many successful iterations, with
k' being the last.

To establish a contradiction, suppose 0 ¢ Of (a:kl) By the continuity of each
component F; granted by Assumption 1, there exists A so that for all A € [0, A), the
manifold sets active in B(wkl, A) are precisely the manifold sets active at 2F; that is,

{ lim sign(y’) : lim ¢/ =2, {y/ :j > 1} C Mq} = {Sign(y) ty€ B(x’“',A)}'

yj_mk’ Jj—o0
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Since every iteration after k' is assumed unsuccessful, hence decreasing Ays by
an additional factor of y4ec in each subsequent iteration, there exists a least k" > k'

so that Ag» < A. Therefore, by Assumption 4, VM (z*)sign(z* + s*) € G* holds
the first time Line 9 of Algorithm 1 is reached in iteration & > k”. Consequently, the
conditions for Lemma 1 hold; and thus, for each k > k. there exists v(g*) € af (z*")
so that [[v(g*) — g"|| < keAj. By supposition, since 0 ¢ df(x*"), there is a nonzero
minimum norm element v* € §f(z*"). We thus conclude the following:

g = lo(g")l = (g + L)Ag 2 [[v*|| = (5 + L)Ax - forallk > k" (4.7)

Since every iteration after k" is unsuccessful, Ay will decrease by a factor of Yqec and

’ 1 _
2Pl = 2% for each k > k”. Defining the constant ¢, = n , it
ke + (kg + L)(1 —m)
must be the case that
* (1 — 771) 1
A <alpr] < E B gh,
£
for some ki > k” sufficiently large. Similarly using (4.7), we get that
n2[v*|] k
Ap, < ————— < 2,
ko 1+7’]2(I€g+L) 7”’]2”9 H
. . . 2
for some ko > k' sufficiently large. Defining ¢y = ||v*|| min< ¢;, ———————— 7, We
> y larg g ea = lofmin for, ot

c
have that success is guaranteed within |log, 2-‘ many iterations after iteration

Aku
k", since decreasing Ay~ by that many factors of 7qec results in all the sufficient
conditions of Lemma 3 being met. This is a contradiction, thus proving the result
when there are finitely many successful iterations.

Now suppose there are infinitely many successful iterations, indexed by {k;}. Let
x* be a cluster point of {z* : k > 0}. By the same argument when the number of
successful iterations was assumed to be finite, there exists some A > 0 so that the
manifold sets active in B(z*, A) are precisely the manifold sets active at z*.

Since A — 0 by Lemma 4 and since x* is a cluster point, there exists an infinite
subsequence of {k;}, denoted by {k; }, so that B(a:kj/,Akj,) C B(xz*,A) for all . On
each of these iterations kj;/, denoting

G ={VM(z"")pat® :s=1,...,1} and
df(z*) = co {VF(J:*)patqé’ s =1,.. .,l’},
we have from Assumption 4 that {pat? : s =1,...,1} C {patqé/ s =1,...,l'}
since B(xki’,Akj,) C B(xz*, A).

Therefore, by Lemma 1 and the reverse triangle inequality, there exists some
nonzero v(gki') € 9f(x%") satisfying

[v(g" )l < 19" || + (kg + L) A,

where kg and L are defined in Assumption 3 and Assumption 1, respectively.
Since Ay, — 0 by Lemma 4 and g% || — 0 by Lemma 5, we get by the squeeze

theorem that there exists a sequence v(g*") with v(gFi") € 9f(z%") for all {k;} and
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lv(g®")|| = 0. Since f is continuous, we know that the mapping df(x) is everywhere
outer semicontinuous by Theorem 6. Because we have a subsequence of subgradients
that converge to zero at any cluster point 2* and since 9 f(z*) is outer semicontinuous,
we have that 0 € 9f(z*). O

4.3. Finite Time Behavior. One would hope that (on acceptable iterations), a
small master model gradient norm would signal that necessary conditions for proxim-
ity to stationarity are satisfied, analogous to how a small gradient norm serves as such
a signal in smooth optimization. Although this is not always so, we provide the exact
theoretical conditions under which a statement like this holds for Algorithm 1. This
approach emulates a stopping criterion used in [13], which likewise cannot generally
be shown to be a necessary condition of proximity to stationarity.

LEMMA 8. Let Assumptions 1-2 hold, and let Assumption 4 hold. Suppose that
at iteration k, Line 14 of Algorithm 1 is reached with ||g¥|| < € for some e > 0. Let
Gk = {VM (z*)pat? : s =1,...,j} be the generator set at iteration k. Additionally,

suppose there exists y € B(z*, Ay) so that df(y) = co {VF(y)patq-g’ s =1,... ,j’}
with {pat®,--. pat®} C {pat?,... 7pa’cq;’}. Then,

min |jv|| < (14 (kg + L)n2)e,
in o] < (14 (5 + D)
where kg is as in Assumption 8 and L is as in Assumption 1.
Proof. By Assumption 2, 7 > 0. Since Line 14 is reached with ||g¥|| < e, it must
be that % < |l¢"|| < e. By Lemma 1 and the suppositions, there exists v(g*) € df(y)
so that

19" = v(g")]| < (#g + L)Ay, < (kg + L)ie.
Applying the reverse triangle inequality yields
[v(g")I < (1 + (kg + L)n2)e,

from which the desired result follows. O

We note that the assumptions that the iteration be acceptable and that y lie
within Ay of 2 directly tie the result to both the master model gradient ||¢g*|| and
the trust-region size Ay,. A termination certificate consisting of these two quantities
is analogous to the “optimality certificates” used in [4]. In both cases, the certificate
can be interpreted as indicating that two of three necessary conditions are satisfied so
that there is a point y € B(z*, A;) so that an element of df(y) is as small in norm as
suggested in Lemma 8. The third necessary condition, which is not as straightforward
to check, is that the algorithm’s iterates have become sufficiently clustered around y
so that the manifolds active at y are a superset of the manifolds active in B(z*, Ay).

We remark here that this dependence on knowing all the manifolds active in a
given trust region makes a straightforward analysis of rates based on || g,f || elusive.
Therefore, a comparison of the theoretical worst-case complexity of Algorithm 1 with
the rates proven for the nonsmooth methods in [10] is currently elusive.

5. Manifold Sampling as a Stochastic Algorithm. Thus far, no restric-
tions have been placed on the sample set Y (z*, Ay), apart from its containment
in B(z*, Ay). In this section, we consider what happens when Y (z¥, A};) includes
stochastically sampled points, a strategy that results in Section 6 show is fruitful
when G* is built by using Algorithm 3.
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If random points are added to Y (¥, Ay), the sequence of generator sets {G* : k >
1} will be a realization of a random variable denoted {G* : k > 1}. Consequently,
the algorithm will be inherently stochastic; the sequence of iterates produced by
Algorithm 1 will be random variables {#* : k > 1} with realizations {2* : k > 1}.
Similarly, we denote by {Ag : k > 1}, {5* : k > 1}, and {§* : & > 1} sequences
of random trust-region radii, trial steps, and master model gradients with respective
realizations {Ay : k > 1}, {s* : k> 1}, and {¢* : k > 1}.

We show in Theorem 9 that the results from Section 4 hold for any realization
of Algorithm 1. Note that Assumptions 1 and 2 are unaffected by stochasticity in
Y (2%, Ay) (and G* is similarly unaffected on any iteration). In particular, we note
that Assumption 3 ensures that the quality of the component models holds in a
deterministic fashion. Assumption 4 has the stochastic analogue of assuming that
every iterate in any realization satisfies the deterministic Assumption 4. This is
nonrestrictive since Assumption 4 requires that G* satisfy conditions depending not
on Y (x* Ay) but only on the sign patterns in B(z*, Ay), which is a deterministic set
at any iteration.

THEOREM 9. Let X* denote the union of all cluster points x* over all realizations
{(z*, Ay, s*,G*,g%) : k > 1} in the o-algebra generated by {(jk,Ak,ék,ék,gk) :
k > 1}. Let Assumptions 1-2 hold, let Assumption 4 hold for each (x% A in any
realization {(z*,Ay) : k > 1}, and let Algorithm 1 be initialized with (&%, Ag) =
(2%, Ag). Then, for every x* € X*, 0 € Of(x*).

Proof. The proof follows the same argument as in Section 4.

Let {(%, Ag,s% G* ¢g¥) : k > 1} be an arbitrary realization of the random se-
quence { (¥, Ay, 5%, G*, %) : k > 1} produced by the stochastic algorithm.

Lemma 1 is independent of the realization, and both the Projection Theorem and
Theorem 6 hold independently of Algorithm 1. Lemma 3 holds deterministically for

any k where Ay and ||g¥|| (produced by G*) satisfy A < min { 17"17772} llg" |-

Rf

Lemma 4 depends only on f being bounded below (a result of Assumption 1),
and thus we get Ay — 0 for the arbitrary realization.

Lemma 5 holds if Y (¥, A}) is stochastic, thereby producing stochastic G, be-
cause the realization {(Ay,g¢*) : k > 1} having liminfx_, . [|g*| # 0 would similarly
contradict Ay — 0 (Lemma 4).

We can now prove the theorem. Suppose {z* : k& > 1} has a cluster point x*.
Then, having proved that all the lemmata hold for the arbitrary realization, a direct
application of Theorem 7 to that particular realization gives us that 0 € Jf(z*).
Since the realization of {(Z¥, Ay, 5", G, §%) : k > 1} was arbitrary, we have shown
the desired result. O

We note that Theorem 9 is a stronger result than saying that the cluster points
of {#¥ : k > 1} almost surely have zero in the subdifferential.

6. Numerical Results. We now examine the performance of variations of the
manifold sampling algorithm outlined in Algorithm 1. Throughout this section, we
use 9P to denote the jth point evaluated on a problem p by an optimization
solver s. For derivative-based versions of Algorithm 1, such points correspond solely
to the trust-region subproblem solutions (Line 8) and points possibly sampled when
constructing the generator set (Line 5); for derivative-free versions, evaluated points
may additionally include evaluations performed to ensure that the component models
are fully linear in the current trust region (Line 4). We drop the final superscript (s)
when the point is the same for all solvers.
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6.1. Implementations. In our first tests, we focus on the derivative-free case,
when only zero-order information (function values) of F is provided to a solver; we
view such solvers as a broader test of the manifold sampling algorithm.

In our implementations of Algorithm 1, the sampling set Y (¥, Ay) was used for
construction of both component models and generator sets (through Algorithm 3).
All our implementations employ linear models, m*, of each component function Fj.
The linear models are constructed so that m® interpolates F; at 2* and is the least-
squares regression model for the remainder of the sampling set, Y (z*, Ay)\z*. At the
beginning of iteration k, we set Y (2, A) to be all points previously evaluated by the
algorithm that lie in B(x*, Ay). If this results in an underdetermined interpolation
(i.e., rank (Y (z¥, Ag) — 2¥) < n), then additional points are added to Y (z*, Ag) as
described below.

We tested four variants of Algorithm 1, which differ from one another in how
they construct the generator set G* and how they add points to the sampling set
Y (2%, Ay):

Center Manifold Sampling (CMS): Uses Algorithm 2 to build the generator set
G*; this generator set does not depend on the sampling set Y (z¥, A,), which
is used solely for constructing the component models. For building these
models, the scaled coordinate directions, {mk + Ager, - ,xk + Age, } all are
added to the sample set Y (z*, A},) in cases of underdetermined interpolation.

Greedy Deterministic Manifold Sampling (GDMS): Uses Algorithm 3 to build
the generator set G*. Additional points are not added to the sample set
Y (2, Aj) unless the linear regression is underdetermined. In the underde-
termined case, n—rank(Y (z¥, Ay) — 2¥) directions D in the null space of
Y (2%, Ag) — 2 are generated by means of a (deterministic) QR factoriza-
tion. After evaluating F' along these scaled directions, the associated points
o + ApD are added to the sample set Y (2, Ay).

Deterministic Manifold Sampling (DMS): Uses Algorithm 3 to build the gener-
ator set and adds scaled coordinate directions, {x* + Agey, -, 2% + Age, },
to the sample set Y (z*, A) every iteration.

Stochastic Manifold Sampling (SMS): Uses Algorithm 3 to build the generator
set and adds a set of n points randomly generated from a uniform distribution
on B(z*, Ay) to the sample set Y (z¥, A},) every iteration.

The strategy used to add points to the sample set Y (¥, A},) in the deterministic
variants ensures the full linearity of the models required in Assumption 3. For the
stochastic variant SMS, however, the realized sample set Y (z*, Ay) results in models
that do not necessarily satisfy Assumption 3. Consequently, Theorem 9 may not hold
for our implementation since such a sample set does not guarantee that the realized
models are fully linear (see, e.g., [6, 18]).

In all cases, the quadratic program in Line 7 of Algorithm 1 was solved by the
subproblem solver used in [7], which is based on a specialized active set method
proposed in [16].

We compared the above variants with a modified version of the minimax method
of Grapiglia et al. [11], which we denote GYY. We adjusted the code used in [11]
to solve ¢;-problems by changing the nonsmooth subproblem linear program (2.6).
We also adjusted stopping tolerances to prevent early termination: we decreased the
minimum trust-region radius to 10732 and removed the default criterion of stopping
after 10 successive iterations without decrease in the objective.

As a baseline, we also tested two trust-region algorithms for smooth optimization.
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FIGURE 1. Sample trajectories of function values on problem 11 (left), which hasn =1 =4, and
problem 52 (right), which has n = r = 8. In SMS, 30 runs were performed: the upper band shows
the largest function value obtained at the indicated number of function evaluations and the lower
band shows the least function value obtained; the median values are indicated in the line segment
connecting the 25th and 75th quantiles of the function values.

The codes L-DFOTR and Q-DFOTR are implementations of the algorithm described
in [6] using, respectively, linear and quadratic regression models defined by an appro-
priately sized, deterministic sample set. These implementations may not converge to
a stationary point since they assume a smooth objective function, but they serve as
important baselines since they are more efficient at managing their respective sample
sets.

By design, all seven of the codes tested employ a trust-region framework, and
thus the parameters across the methods can be set equal. The parameter constants
were selected to be Ay = max{l, Hx(o’p)Hoo}, n = 0.25, 72 = 1, Ygec = 0.5, and
Yine = 2.

6.2. Test Problems. We consider the ¢; test problems referred to as the “piece-
wise smooth” test set in [19]. This synthetic test set was selected in part because of
the availability of the Jacobian VF(z) for each problem, and thus the subdifferential
in (2.4); this is useful for benchmarking purposes. The set is composed of 53 problems
of the form (1.1) ranging in dimension from n = 2 to n = 12, with the number of
component functions, r, ranging from n to 65.

A standard starting point, (%), is provided for each problem p in the test set.
We note that the objective f is nondifferentiable at z(9?) for five problems (numbers
9, 10, 29, 30, and 52).

For all test problems, there is neither a guarantee that there is a unique minimizer
x* with 0 € Jf(x*) nor a guarantee that f(z*) = f(y*) for all z* y* with 0 €
Of(x*) N of(y").

A maximum budget of 1000(n + 1) function evaluations was given to each solver
for each n-dimensional problem. Solvers were terminated short of this budget only
when Ay, fell below 10732, We note, however, that for virtually every solver and
problem, no successful iterations were found after Ay, fell below 10~'8; this result is
unsurprising given that the experiments were run in double precision.

Figure 1 shows typical trajectories of the best function value found on two prob-
lems where min f(x) = 0. The sole stochastic solver (SMS) was run 30 times; Figure 1
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FIGURE 2. Best function value (left) and stationary measure W(x) (right) found in terms of
the number of function evaluations performed for problem 31, a problem with n = 8 dimensions and
r = 8 components. The stationary measure indicates that all instances of SMS find a stationary
point, despite the function values associated with these stationary points being different.

shows that there is little variability across the 30 instances. Figure 2 (left) shows the
trajectory on problem 31, where we see that at least one instance of SMS finds a best
function value different from that of the majority of SMS instances. In each of these
instances, the smooth solvers L-DFOTR and Q-DFOTR struggle to find solutions with
function values comparable to those found by the nonsmooth solvers.

6.3. Measuring Stationarity. The behavior seen in Figure 2 (left) suggests
that the function values found by a solver may not indicate whether the solver has
found a stationary point. We now measure the ability of a solver to identify points
close to Clarke stationarity.

Lemma 8 does not guarantee that (A, ||g*||) provide a measure of stationarity.
Instead, we will employ the stationarity measure used for nonsmooth composite op-
timization in [22] and more recently in [11]. This measure considers the maximum
decrease obtained from directional linearizations of f at x,

V(@) = max (@) = |F()+ VF@)d]). (6.1)

From the fact that f is Clarke regular (see, e.g., [5]), a cluster point z* of {z*}
being Clarke stationary is equivalent to the condition liminfy ., ¥(z*) = 0. Such a
stationary measure is also readily computed for our benchmark problems since the
Jacobian VF' is known. For example, a variant where the Euclidean norm on d is
changed to an /., norm can be obtained by solving the linear optimization problem

rillisn{eTs s> F(a*) + VF(2*)d, s > —F(a") — VF(2*)"d, d € [-1, 1]"} .

The importance of using the stationary measure ¥ is highlighted in Figure 2,
where we see the performance of seven algorithms on problem 31. Most of the mani-
fold sampling implementations find the same (and largest) amount of function-value
decrease, but GYY and an SMS instance converge to a point with a relatively worse
function value. Even so, these points all have similar stationary behavior. L-DFOTR
and Q-DFOTR fail to find a stationary point.
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FIGURE 3. Data profiles based on the function value convergence measure (6.2) for T = 1073
(left) and T =107 (right).

6.4. Measuring Performance across the Set. For comparing of performance
across the entire test set, we use the data profiles described in [19]. Let S denote the
set of solvers we wish to compare, and let P denote the set of test problems. By ¢, ,
we denote the number of function evaluations required for solver s € S to satisfy a
convergence criterion on problem p € P. We use the convention that ¢, s = oo if this
convergence criterion is not satisfied within the maximum budget of evaluations.

For k > 0, the data profile for solver s is then defined by

1

ds(:‘ﬁl) = ﬁ

{p€Pitys < rln, + D},
where n,, is the dimension of problem p.

We first examine the convergence criterion in [19], which is based on the best
function value found by an algorithm. In particular, given a tolerance 7 > 0, we will
say that solver s has converged on problem p when an zU?*) € R"» has been found
such that

F@0P) < o+ 7 (f(@OP) = f), (6.2)

where f, is the least function value obtained across all evaluations of all solvers in S
for problem p and where z(°?) is an initial point common to all solvers. The parameter
7 determines how accurate one expects a solution to be in terms of the achievable
decrease f(z(OP) — f,.

Figure 3 (left) shows that all manifold sampling implementations and GYY suc-
cessfully find points with function values better than 99.9% of the possible decrease
for over 90% of the problems. For the smaller 7, the solvers’ performances are more
distinguishable. SMS finds decrease at least as good as (1 — 1077)% of the best-
performing method on 75% of the problems, while GDMS and GYY do so for 85%
of the problems. The relative success of GDMS over the other deterministic solvers
highlights the importance of a judicious use of the function evaluation budget. The
quick plateau behavior for the smooth solvers indicate that these solvers are efficient
on the problems that they are able to solve.

Our next convergence criterion relates to the stationarity measure (6.1). Given a
tolerance 7 > 0, we say that convergence has occurred when

(z0P)) < 70 (20P), (6.3)
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FIGURE 4. Data profiles based on the W convergence measure (6.3) for 7 = 1073 (left) and
T =10"7 (right).

Using (6.3) to test for convergence in Figure 4, we gain additional insight into the
performance of the solvers. Figure 4 (left) shows that Q-DFOTR and L-DFOTR do not
find points with ¥ values less than one-thousandth of the stationary measure at z(0-?)
on a majority of the benchmark problems, while the other solvers do so for over 95%
of the problems. For the more restrictive 7, CMS and DMS perform nearly identically,
while SMS and GDMS are shown to be even more robust. GYY is relatively faster
at finding small ¥ values in the initial 150(n 4+ 1) function evaluations. Note that
the data profiles for SMS are improved when moving from function value measures
(Figure 3) to stationarity measures (Figure 4). We attribute this behavior to the fact
that some stochastic instances find stationary points with relatively worse function
values (recall Figure 2).

Before proceeding, we note that although these tests show that GDMS is efficient
when evaluations are performed sequentially, the other variants have the ability to
utilize n 4+ 1 evaluations concurrently and therefore might prove more useful in a
parallel setting.

6.5. Comparison with Gradient Sampling. We also compare the perfor-
mance between a variant of manifold sampling that uses some gradient information
(SMS-G) and GRAD-SAMP, a MATLAB implementation of gradient sampling from
[4] that uses gradient information at every evaluated point. This code was run with its
default settings and a budget of 1000(n+1) Jacobian (and hence gradient) evaluations.
Since GRAD-SAMP does not proceed from a nondifferentiable initial point, the five
problems with nondifferentiable starting points were perturbed by machine epsilon.
We also extended the set of sampling radii in GRAD-SAMP from {107*,107°,1076}
to {10_4, 107°,..., 10_16} to avoid early termination.

As suggested by its name, SMS-G is SMS from Section 6.1 with the following
modifications. The model building step, Line 4 in Algorithm 1, directly uses the
Jacobian VF(z*) and thus M(z) = F(2F) + VF(2F)(z — 2). Since the default
settings in GRAD-SAMP samples min(n + 10, 2n) gradients per iteration, SMS-G has
this manifold sampling rate as opposed to the n points sampled each iteration by
SMS.

Notice that because SMS-G computes a new Jacobian only immediately follow-
ing a successful iteration, it incurs at most one Jacobian evaluation per iteration.
The manifold sampling step and the evaluation of the trial point in SMS-G require
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FIGURE 5. Data profiles based on the function value convergence measure (6.2) for T = 1073
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FIGURE 6. Data profiles based on the ¥ convergence measure (6.3) for 7 = 1073 (left) and
T =10"7 (right).

only function evaluations (i.e., not Jacobian evaluations), and so SMS-G incurs at
most min(n + 11,2n + 1) function evaluations per iteration. On the other hand,
GRAD-SAMP can require a bundle of min(n + 11,2n + 1) gradient (and hence Jaco-
bian) and corresponding function evaluations per iteration. Thus, in our data profiles
measured in terms of function evaluations, every function evaluation used by GRAD-
SAMP entails a Jacobian evaluation; SMS-G function evaluations include a Jacobian
only evaluation for a fairly small (always less than 20%) proportion of the function
evaluations.

Data profiles are shown in Figure 5 and Figure 6 for an experiment where 30
stochastic runs were performed for both solvers. We also compare results with 30
instances of the Jacobian-free SMS described in Section 6.1. The gradient sampling
method performs significantly worse than either manifold sampling method. Fur-
thermore, the similar performance exhibited by the Jacobian-based SMS-G and the
Jacobian-free SMS indicates that the performance of SMS-G would likely further im-
prove if the sampling rate were reduced.
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7. Discussion. The driving force behind the proposed manifold sampling algo-
rithm is that search directions are computed by using a finitely generated set,

co { VM (z*)sign(y’) + Z t;Vmfi(2®)  t e {=1,0,1}",¢7 € Y (aF;Ap) 3,
i:[sign(y7)],=0

which differs from the finitely generated set used by gradient sampling,
co {VM(y’)sign(y’) : y/ e DNY (2" A)}.

Our tests on ¢; functions show that the manifold sampling strategies compare favor-
ably with a gradient sampling approach.

Although the present work targeted composite problems (1.2) for the particular
nonsmooth function h(u) = ||ul|1, the approach can be extended to other functions
h, provided one can classify points into smooth manifolds (either with zero-order
information or inexact first-order information). In the case of ¢; functions, this clas-
sification was determined by the trivial evaluation of the sign pattern of F(y) for a
sample y € Y (x,A). In the case of minimax objective functions of the form

h(u) = max wu; or ‘max |u;l,
i=1,...,7 i=1,...,7
this classification is determined by what Hare and Nutini refer to as the “active set” at
a point [13]. In general, in any setting where the form of the subdifferential dh at any
point is known, a setting that subsumes much of the work in the nonsmooth composite
optimization literature, an analogous version of Algorithm 1 can be proposed.

In particular, the manifold sampling approach does not rely on convexity of the
function h. This is in contrast to methods that solve the nonsmooth subproblem (2.6).
An example of such a method is the GYY code modified from [11], which we showed
can slightly outperform manifold sampling on ¢; problems.

In addition to the extensions above, we see opportunities for employing approx-
imate second-order information to accelerate convergence. In this paper, we proved
results only for a certain linear master model, which may be used as a baseline for
proving results about search directions that use curvature information about the com-
ponent functions F;. Using second-order information in the derivative form of a
gradient sampling algorithm through L-BFGS steps was explored in [7]. Curvature
information in derivative-free nonsmooth optimization was also explored in [14].

We are also interested in efficient and greedy updates of sample sets for mani-
folds and/or models in both settings where function (and Jacobian) evaluations are
performed sequentially and concurrently. Our implementation of GDMS is a first step
in this direction. Furthermore, natural questions arise about the tradeoff between
richness of manifold information to reach early termination of the inner while loop
in Algorithm 1 and efficiency to guarantee that the sample set is, for example, well
poised for model building.
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